
From LLMs to Actions: Latent Codes as Bridges in
Hierarchical Robot Control

Yide Shentu∗ Philipp Wu∗ Aravind Rajeswaran Pieter Abbeel
*Equal contribution

University of California, Berkeley

Fig. 1: Illustration of our proposed Latent Code as Bridges architecture. Given a high-level task description and observation, a Large
Language Model (LLM) generates a textual description of an action and an <ACT> token. The feature embedding from the <ACT> token’s
last layer serves as a high-level latent goal for the downstream action policy network. Our modular hierarchical approach synergies the
LLM’s high-level reasoning with the pre-trained policy’s responsive low-level control, addressing the limitations of direct action output by
monolithic LLMs. Unlike methods that using a large LLM to directly output agent actions [1], our approach can run the LLM reasoning and
action policy execution loops asynchronously, mirroring human task execution with immediate low-level feedback when interacting with
the physical world and slower, deliberate reasoning when considering longer term planning. At the test time, the action policy frequently
updates actions based on environment changes, while the LLM updates are less frequent, enabling efficient, real-world applicability.

Abstract— Hierarchical control for robotics long been plagued
by the need to have a well defined interface layer to communicate
between high-level task planners and low-level policies. With the
advent of LLMs, language as been emerging as a prospective
interface layer. However, this has several limitations. Not all
tasks can be decomposed into steps that are easily expressible in
natural language (e.g. performing a dance routine). Further, it
makes end-to-end finetuning on embodied data challenging due
to domain shift and catastrophic forgetting. We introduce our
method – Learnable Latent Codes as Bridges (LCB) – as an
alternate architecture to overcome these limitations. LCB uses a
learnable latent code to act as a bridge between LLMs and low-
level policies. This enables LLMs to flexibly communicate goals
in the task plan without being entirely constrained by language
limitations. Additionally, it enables end-to-end finetuning without
destroying the embedding space of word tokens learned during
pre-training. Through experiments on Language Table and
Calvin, two common language based benchmarks for embodied
agents, we find that LCB outperforms baselines (including those
w/ GPT-4V) that leverage pure language as the interface layer
on tasks that require reasoning and multi-step behaviors.

I. INTRODUCTION

The field of robotics has long oscillated between two
predominant architectural paradigms for enabling agents to
solve complex tasks. At one end of the spectrum, we have seen
modular hierarchical policies [2] for control that leverage
rigid layers like symbolic planning, trajectory generation, and
tracking. On the other end are end-to-end policies [3] that
directly map sensory observations to actions through high-
capacity neural networks. This dynamic history reflects the
ongoing quest to reconcile the logical human-like reasoning
with the flexible dexterity of human motor control.

The advent of large language models (LLMs) [4], [5]
and their remarkable language interpretation and reasoning
capabilities have reignited interest in hierarchical control
architectures. Recent works [6], [7], [8] have leveraged LLMs
and Multimodal Large Language Model (abbreviated as LLM
in this paper unless specified otherwise) in place of high-
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level symbolic planners, enabling impressive results like
mobile rearrangement of objects based on open-vocabulary
instructions. Despite these advances, the core deficiencies
of hierarchical architectures remain – namely the need for
a set of clearly defined control primitives and an interface
between layers in the hierarchy. For example, LLMs leverage
the semantic meaning of action verbs to coordinate low-level
primitives like go-to, pick, place etc. However, we humans
perform a variety of movements with our body that contribute
to our dexterity and daily function, yet cannot be easily
described using language.

In this backdrop, we present Latent Codes as Bridges, or
LCB, a new policy architecture for control that combines
the benefits of modular hierarchical architectures with end-
to-end learning (see Fig. 1 for an illustration). Specifically,
LCB can directly leverage LLMs for high-level reasoning
and pre-trained skills/policies for low-level control, but
can improve these components with end-to-end learning
to transcend their initial capabilities. This is achieved by
learning an <ACT> token at the interface layer which can
modulate the low-level policies. As a result of this choice,
LCB can overcome the inherent limitations of solely relying
on language as the interface layer, since several behaviors
are hard to describe in language. Secondly, by leveraging a
separate <ACT> token, we do not destroy the core language
generation and reasoning capabilities of the LLM during
finetuning. We test LCB on a series of long-horizon and
reasoning tasks in Language Table [9] and Calvin [10],
two common language based benchmarks for embodied
agents. We find that LCB considerably outperforms baselines
that leverage LLMs to sequence low-level skills using pure
language as the interface layer. See our website for more.

II. RELATED WORK

Hierarchical Control with LLMs The proliferation of LLM
technology, coupled with their capability to interpret user
prompts and perform reasoning, has led to growing interest
in utilizing LLMs for robotics [11], [12]. Of particular
notice and relevance are the use of LLMs for high-level
reasoning in hierarchical control architectures. Prior work
has demonstrated this by leveraging the few-shot prompt
capabilities of LLMs [7], [6], their ability to code and
compose functions [8], [13], or their ability to interact with
human users through language [14]. In contrast to these works
that attempt to use LLMs “as-is” and compose low-level skills,
our work performs end-to-end fine-tuning through learnable
latent codes. This includes finetuning some layers of the LLM
through LoRA[15]. Empirically we show that such finetuning
can outperform methods that use LLMs out-of-the-box.
Language Conditioned Imitation Learning To leverage
LLMs for task planning and reasoning, such models need
to be able to call lower-level skills to affect change in
the environment. This can be achieve in two ways: (a)
by leveraging semantics of the skills through language
descriptions (e.g. go-to, reach etc.) as described above;
or alternatively (b) through language conditioned policies
which accept a text description as input to directly produce

an action [9], [16], [1], [17], [18]. Such policies can typically
perform only short horizon tasks and lack the reasoning and
planning capabilities often found in LLMs. Our goal in this
work is to leverage such “simple” or “primitive” language-
conditioned policies along with LLMs to enable a hierarchical
system to perform complex tasks that require multi-step
planning and reasoning.
Large Pre-Trained Models for Embodied Agents Recent
years have witnessed growing interest in robotics to re-
use large models originally trained for vision or language
applications [19], [12] or their architectures [20], [21],
[22], [23]. We are also starting to see large models and
representations custom trained for robotics [1], [24], [25]. In
our work, we leverage the recent class of Multimodal Large
language models [26], [27], [28] that extend the capability
of text only LLMs to interpret other modalities like vision
through alignment layers. Specifically, our model builds on
top of LLaVA [26] and finetunes the model on a simulated
dataset of embodied reasoning and long-horizon tasks. As
the availability of embodied datasets paired with language
annotations grow, we hope that our method can be extended
to release generalist models that can be deployed zero shot
in new domains.

III. METHOD

We wish to develop a hierarchical policy architecture
that can enable robots to perform a variety of manipulation
tasks when provided with free-form language descriptions.
Specifically, we seek an architecture that can handle low-level
actions for fine-grained or contact-rich tasks (e.g. pushing,
6D object manipulation) while also having the capability
to reason and plan without any external step-by-step
instructions. Before we present our architecture for this
purpose, we first survey two other families of approaches
and their deficiencies, which provides the intuition and
basis for our method. These approaches are shown in Figure 2.

LLMs Leveraging Predefined Skills First we can consider
a hierarchical approach where LLMs perform high-level task
planning by calling a set of pre-defined skills or APIs [6], [8].
These APIs (e.g. go-to, push) are described and provided
to the LLM as part of the main prompt. This approach
suffers from two primary drawbacks. Firstly, for an LLM
to plan with skills, they need to have semantics attached to
them that make linguistic sense. Secondly, this constrains the
set of skills to a closed vocabulary, and prevents any form
of generalization to new skills or capabilities. Furthermore,
code-writing proficiency demands a high-quality LLM, a
criterion met chiefly by proprietary commercial models
such as GPT-4 [2]. Additionally, end-to-end fine-tuning is
challenging since the LLM cannot adapt or compensate for
limited prowess of the low-level skills [6].

Language as Interface The second class of approaches
can leverage language-conditioned low-level policies as
opposed to a finite set of low-level skills. Such policies can
take a simple language command as input (e.g. pickup
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Fig. 2: A high level architectural comparison of LLM-based policies. Predefined skills (left) uses a LLM to call predefined primitives.
Language as an interface (middle) uses a LLM to output a simple language command, which is then passed into a language conditioned
policy. LCB (right) utilizes a latent code as a bridge between the LLM and the low level policy, facilitating hierarchical control and
end-to-end learning.

the red block) and produce actions that can (hopefully)
accomplish the task. Since these policies can accept
free-form text as input, at least theoretically, they have the
capability to generalize to new instructions. Furthermore,
they are amenable to end-to-end fine-tuning from high-level
instructions, through an LLM, to the language conditioned
policy, and ultimately the action. Nevertheless, this class
of approaches also suffer from key limitations. Firstly, not
all high level tasks can be decomposed into sub-tasks in
simple language. For example, imagine trying to describe
step-by-step instructions to make a robot dance to a song.
Secondly, end-to-end fine-tuning with such an architecture
can destroy planning and reasoning capabilities that the
LLM originally had [29].

Latent Codes as a Bridge (Ours) Finally we describe our
method which can overcome the key limitations outlined
above. Our key insight is that we can introduce an additional
latent code to act as a bridge between the high-level LLM
and low-level language conditioned policy. We augment the
LLM’s tokenizer by adding a specialized <ACT> token,
prompting the model to predict this token in response
to actionable questions. The last layer embedding of the
<ACT> token is then utilized as a latent goal for the
downstream policy network. This learnable <ACT> token’s
embedding facilitates the transmission of abstract goals and
nuances to the low-level policy – details that are not easily
conveyed through language alone. Furthermore, by using
this additional learnable token, we preserve the embedding
space for language tokens, thus preventing any catastrophic
forgetting during end-to-end fine-tuning. We describe more
specific details of our architecture and implementation below.

A. Architecture and Implementation Details of LCB

LCB unifies the capabilities of a slow but powerful
pretrained Multimodal Large Language Models (LLMs) with
a fast and simpler decision-making policies to create a model

that ingests vision and language inputs to output low-level
actions. This integration involves a two-component system: a
pretrained LLM, denoted as fφ , and a pretrained policy, πθ ,
parameterized by φ and θ respectively. The LLM consists of
a text only large language model and a vision encoder, which
projects images into the text only large language models
embedding space, facilitating a multimodal understanding
of textual and visual inputs. In this work, we leverage
LLaVA[26] as our pretrained LLM. fφ takes in text tokens
xtxt and images ximg and outputs text tokens. The pretrained
policy πθ takes as input environment observations at the
current time step ot , with conditioning latent z, and outputs
the action at the current time step at .

We introduce an additional <ACT> token into the vocab-
ulary of the language model, which is a special token that
enables the language model to generate an action embedding
to control the lower level policy. The model is trained to
output <ACT> tokens when executable requests are provided
to the model. We extract out the last-layer embedding features
from the model of at the <ACT> token, following LISA
[30]. This embedding is projected into the policy latent
conditioning space by a linear layer to extract the latent
feature z<ACT> which is then fed into the policy πθ .

B. Data Processing

The LCB framework necessitates diverse and strategically
curated datasets to make overall policy for effective language-
guided action execution in varied contexts. We cater the data
collection and preprocessing steps towards this goal, creating
a small instruction tuning dataset.

We convert in domain text conditioned policy data into the
chat format of LLM assitants. Typical language conditioned
trajectory datasets contain one language instruction and a
list of (observation, action) pairs [xtxt ,(o0,a0, ...,ot ,at , ...)]
per trajectory. We generate language request chat interaction
data by creating a template, which is extended for diversity
with auto generated GPT-4 templates. A simple example

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 3446 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.



of this user-assistant interactions, is “User: can you help
me xtxt? Assistant: yes, <ACT>.” This trains the model to
recognize and respond to direct action requests, fostering
a conversational interface that seamlessly transitions from
dialogue to action.

Moreover, we enrich our training material with additional
datasets designed to prompt specific behaviors from the
language model. One such data source is reasoning data,
where the model is tasked with a more abstract goal and must
reason about the scene to accomplish the goal. Such examples
are framed within a chat-like interaction, encouraging the
model to articulate its reasoning process before executing the
<ACT> command. For example, “User: ximg Can you xtxt?
Assistant: I will xgoal <ACT>”. Where xtxt does not explicitly
specify the target object and location. The assistant’s response,
xgoal , provides an explanation such as “I will move the blue
cube on the bottom right to the blue moon” after interpreting
the question with the provided image observation.

We also study long-horizon tasks and incorporate training
sequences that require the model to plan and execute multiple
steps to achieve a goal. This is achieved by defining task
stages (start, regular, transition, stop) and incorporating the
previous action as context in the language model’s input.
This strategy trains the model to recognize task progression
and adapt its actions accordingly, enabling it to manage tasks
with evolving objectives. Through this dataset strategy, LCB is
finely tuned as a versatile tool capable of understanding and
executing a wide range of language-guided actions.

C. Training

The training of LCB employs a combination of techniques
to integrate the LLM and policy components. We leverage

Fig. 3: A visualization of the two environments along with exemplar
tasks that we train and evaluate on. The top depicts the Language
Table environment [9]. We evaluate study reasoning tasks (first
trajectory) and long horizon tasks (second trajectory). The bottom
depicts the CALVIN long horizon benchmark [10], in which the
agent must sequentially accomplish tasks.

Low Rank Adaptation (LoRA) for fine-tuning the LLM,
allowing for more efficient training[15]. We adopt a cold
start approach to policy training, reminiscent of staged
training strategies seen in prior works, by first freezing the
action decoder and only fine-tuning the language model.
This preliminary phase focuses on aligning the embeddings
produced by the LLM with the feature space of the policy.
We find that adding an additional CLIP loss to regularize
the latent embedding z<ACT> is necessary, ensuring that the
embeddings from the language model remain well aligned
with the lower level ground truth text description gtxt of
the objective for the policy. In total, our loss function is
comprised of 3 terms, and can be expressed as follows:

L =λ1Lpolicy(πθ ,ot ,at ,z<ACT>) (1)
+λ2LLM( fφ ,xtxt,ximg) (2)
+λ3LCLIP(z<ACT>,gtxt) (3)

IV. RESULTS

We systematically evaluated LCB across a diverse set
of environments and tasks to demonstrate the efficacy of
integrating a pretrained Large Language Model (LLM) with
a domain-specific, pretrained low-level policy. Our primary
objective was to elucidate the enhanced capabilities of the
policy, specifically its advanced high-level language com-
prehension coupled with nuanced, domain-specific physical
awareness. Through our experiment, we aim to answer the
following questions:

• Does LCB enable learning an bridge between the LLM
and the policy more effective than pure language?

• Can LCB leverage the pretrained capabilities of LLMs
to solve long horizon tasks tasks by decomposing the
high level goals into the step by step latent commands?

• Can LCB outperforms other baseline methods that
leverage the close-sourced state of the art LLM such as
GPT-4V?

To answer these questions, we study how LCB performs
under various reasoning and long horizon settings in both the
Language table and CALVIN benchmarks. See Figure 3 for
a visualization of the environments and example tasks.

A. Evaluation on Language Table

Language Table offers a simulated tabletop environment for
executing language-conditioned manipulation tasks [9]. The
environment features a flat surface populated with blocks of
various colors and shapes, alongside a robot with 2D action
space. Language Table provides observations in the form of
robot state data and a composite of wrist and third-person view
camera images, despite its simplicity, provides a reproducible
and comprehensive environment to study challenges related at
the interface of high level language and low level contact-rich
dynamics and feedback control.

We investigate the benefit of using LCB on the original
language table benchmark. Here we apply our method using
the same dataset as the original language table model was
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LangTable LangTable + LLAVA (Frozen) LangTable + GPT-4V LangTable + LLAVA (Fine-tuned) LCB
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(a) Long Horizon Success rate for the
multi-step task on Language Table. The
task requires sorting blocks based on
color in a given location.
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(b) Reasoning: Success rate for the reasoning tasks on Language Table. The reasoning task is specified
as a variant of ”There is a block that is closest to i.e., top right corner. Push that block to the other
block of the same shape/color.” This task requires the agent to understand object semantics and spacial
relationships.

Fig. 4: Task success rates on Language Table. The tasks are drawn from the higher level Language Table tasks from PALM-E [31].
LangTable refers to the original language table policy [9]. +LLaVA (frozen) refers to composing the original language table with a frozen
LLaVA model and few shot prompting. +GPT-4V similarly refers to composing the original policy with GPT-4V. +LLaVA (finetuned)
refers to finetuning the LLaVA policy on our mixture dataset on the language only, then composing it with the policy. Our results show
that leveraging LCB is effective on tasks that require additional reasoning and planning.

TABLE I: Comparison on the original Language Table benchmark
tasks. LangTable is the original language table policy [9]. LCB is
our method applied only to the original Language Table dataset. We
see that LCB can help improve task performance by leveraging the
vision language model for feature extraction. The tasks are: Block
to Block (B2B), Block to Block Relative Location (B2RL), Seprate
(S), Block to Relative Location (B2RL), and Block to Absolute
Location (B2AL).

Model B2B B2BRL S B2RL B2AL Avg

LangTable 0.88 0.70 0.94 0.68 0.65 0.77
LCB 0.90 0.66 0.99 0.73 0.71 0.80

trained on, translating the original language instructions into
chat interactions with action tokens as specified in section III.
As shown in Table I, with the end to end optimization with
the pretrained LLM, the success rate across the benchmark
matches or exceeds the baseline Language Table approach.
This signifies that LCB is able to seamlessly adapt a pretrained
LLM and policy together. We suspect that this is due to the
flexibility in the latent representation z<ACT>, allowed for by
our approach.

We next investigate more complex language tasks that
require reasoning and planning capabilities. We collect a
small dataset for each capability, training models to compare
the following approaches:

• LangTable: The original Language Table Policy, as
provided by [9].

• LangTable + LLaVA (Frozen): The combination of
the original policy and a non-fine-tuned LLaVA model
interfacing through language. We prompt LLaVA to
output language commands in the format and style as
expected by LangTable.

• LangTable + GPT-4V: The integration of LangTable
with the state-of-the-art proprietary Vision Language
Model (GPT-4V). In order to bootstap the spatial

understanding of GPT-4V, we also incorporate the Set of
Marker (SOM) [32] technique to enhance the GPT-4V’s
capability. We further include multi-modal few show
contexts including language explanation of the tasks and
image examples.

• LangTable + LLaVA (Fine-tuned): The original policy
augmented by a LLaVA model that has been fine-tuned
on the exact language needed for the action policy for
the given task.

• LCB: We take a pretrained LLaVA model and the
pre-trained LangTable policy and apply LCB, learning
a latent interface between the two on the respective
instruction dataset.

Results for long horizon performance are provided in
Figure 4a. In this task, the agent is tasked with sorting
blocks based on color into a specified location, requiring
a long sequence of actions that require the agent to plan.
We see that LCB exhibits an competency for handling such
tasks, as indicated by the heightened success rates, improving
on pure language interface baselines. This is attributable
to the method’s ability to generate a coherent sequence of
latent action embeddings that guide the policy through the
task’s duration, facilitating a more consistent and accurate
alignment with the sequential nature of the task. During
evaluation we run the higher level language model at a slower
rate than the lower level policy, only updating the language
models output every 40 environment steps. We find that
this increases computational efficiency without compromising
task performance suggesting the effectiveness of the model
hierarchy.

Results for reasoning performance are provided in Fig-
ure 4b. Tasks here are of the form “There is a block that is
closest to corner. Push that block to the other block of the
same shape/color”. In order to successfully accomplish this
task, the agent must identify which block is located closest
to a given corner, identify the relevant property (ie shape or
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Fig. 5: A comparison of the outputs of different approaches higher
level language tasks and the corresponding language outputs. (Left)
LangTable + GPT-4V requires a prompt to understand the task
and desired output format. GPT-4V can provide language reasoning
to allow the user to introspect the decision process of the language
model, but requires additional parsing to extract the relevant language
instruction to provide to the model. (Middle) LangTable + LLaVA
(Fine-tuned) fine-tunes the language model to output the exact
language instruction as in the training data, effectively acting as a
language interface converter. This approach, while effective, removes
the chat like capability from the language model. (Right) LCB fine-
tunes the language model with a chat like interface and action
token. The policy is directly conditioned on the latent feature from
the action token provided by the model, enabling effective policy
conditioning without losing the chat like language model interface.

color) and consolidate that understanding into a executable
instruction. We see that our approach is able to outperform
baselines that involve zero-shot prompting as well as naively
fine-tuning the the language model to output the translated
robot task.

We provide a qualitative assessment of the language output
from the various top performing approaches in Figure 5.
LangTable + GPT-4V requires heavy prompt engineering
and additional string parsing to extract out the final policy.
LangTable + LLaVA is effectively fine-tuned by outputting
the direct low level text command to the policy, but no longer
is able to maintain a chat like interface to the user. In contrast,
LCB is able to output an effective embedding for the low level
policy while also verbalizing its reasoning. This decouples
the low level policy conditioning from the language models
text outputs, offering increase flexabiliy during instruction
fine-tuning.

B. Evaluation on CALVIN

CALVIN[10] is an open-source simulated benchmark
designed for learning long-horizon tasks conditioned by
language. The environment features a 7-DOF Franka Emika
Panda robotic arm equipped with a parallel gripper, situated
at a desk with a variety of articulated furniture and objects
for interaction. In each experiment, the robot needs to solve
a sequence of complex full 6D manipulation tasks governed
by real-world physics and guided by a series of language
instructions. Each subtask is paired by a specific language

TABLE II: Task completion rates for various methods on
CALVIN[10] long-horizon tasks. All methods were trained ex-
clusively on the ABC split of Calvin with the original language
annotations and tested on split D with GPT-4 enriched language
annotations, following the RoboFlamingo enriched instruction
evaluation setting[37].
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Model RF[33] 3DDA[36] LCB

1/5 0.620 0.652 0.736
2/5 0.330 0.391 0.502
3/5 0.164 0.203 0.285
4/5 0.086 0.117 0.160
5/5 0.046 0.061 0.099

Avg Len 0.40 1.42 1.78

instruction; upon successful completion, the robot proceeds to
the next subtask accompanied by a new instruction. CALVIN
encompasses four distinct environments A, B, C and D, with
a shared set of language instructions and subtasks.

In order to demonstrate the generalization capabilities of
LCB cross various environments as well as its ability to
comprehend and act upon the same instructions phrased
differently in the CALVIN long horizon full 6D manipulation
setting, we compare the following approaches:

• RoboFlamingo (RF): RoboFlamingo[33] adapts
OpenFlamingo[34] by fine-tuning solely the cross-
attention layer to directly output actions, thus
maintaining its language comprehension. However,
this approach requires executing the entire LLM anew
with each progression to a subsequent state, leading to
inefficiencies.

• 3D Diffusion Actor (3DDA): Incorporating a diffusion
policy with 3D scene representation and CLIP[35] lan-
guage embedding, the 3D Diffusion Actor [36] sets the
current SOTA on the Calvin benchmark when provided
with standard language instruction inputs. However, a
notable limitation stems from the constraints of the CLIP
text model it employs. 3DDA can not generalize well on
language instruction outside of its training distribution.

• LCB: LCB for Calvin integrates a pre-trained LLaVA[26]
as the Multimodal Large Language Model backbone with
a pre-trained 3D Diffusion Actor serving as the action
policy. This combination leverages the SOTA capabilities
of the 3D Diffusion Actor to achieve a synergistic effect:
LCB for Calvin excels in both language comprehension
and low-level manipulation.

Table II presents results for the CALVIN long-horizon,
language-conditioned benchmark. In this setting, the robot
executes a series of tasks in unfamiliar environments based
on novel GPT-4 enriched instructions not encountered dur-
ing training. The experimental outcomes demonstrate our
approach’s distinct advantage over baseline methods. LCB
significantly surpasses all baselines in terms of task success
rate at every stage and in average completed trajectory length.
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V. CONCLUSION

In this work, we introduces a novel approach, Latent Codes
as Bridges, or LCB, that combines the abstract reasoning
capabilities of large language models with low-level action
policies. Our methodology does not merely stack these
capabilities as in prior works but integrates them in an
end-to-end fashion through a learned latent interface. The
empirical evidence from our evaluations on the Language
Table and CALVIN benchmarks shows the model’s adeptness
in interpreting and executing various reasoning and long
horizon objectives. The flexibility and effectiveness of the
hierarchy enabled by LCB shows promise for real world
robotic applications.
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